กิจกรรม 31 มกราคม - 4 กุมภาพันธ์ 2554 คะแนน 120 คะแนน

-ให้ผู้เรียนวิเคราะห์และสืบค้นเพื่อหาแนวทางอธิบายข้อสอบ O-net 25 กุมภาพันธ์ 2550 จำนวน 12 ข้อ
โดยเพิ่มบทความและทำในหน้าแรกของ Blog ตนเอง






สืบค้นข้อมูล

อัตราเร็วคงที่ หมายถึง วัตถุที่เคลื่อนที่มีอัตราเร็วสม่ำเสมอตลอดการเคลื่อนที่ไม่ว่าจะวัดอัตราเร็ว ณ ตำแหน่งใดจะมีค่าเท่ากันตลอดการเคลื่อนที่ หรือบอกได้ว่า. อัตราเร็ว ขณะใด ๆ มีค่าเท่ากับ อัตราเร็วเฉลี่ย
การคำนวณหาปริมาณต่าง ๆที่เกี่ยวข้องกับอัตราเร็ว
1. การหาอัตราเร็ว
1.1. เมื่อกำหนดระยะทางและเวลาในการเคลื่อนที่คำนวณหาอัตราเร็วโดยการใช้สูตร
1.2. เมื่อกำหนดข้อมูลเป็นกราฟ ระหว่าง การกระจัดกับเวลา ( s - t ).
คำนวณหาอัตราเร็วได้จากความชันของกราฟ โดย อัตราเร็ว = ความชัน (slope)
2. การคำนวณหาอัตราเร็วขณะใดขณะหนึ่งคำนวณหาได้จาก ความชันของเส้นสัมผัส ณ ตำแหน่งที่หาอัตราเร็ว
จากกราฟ อัตราเร็วที่จุด C = slope ของเส้นตรง xyอัตราเร็วเฉลี่ยระหว่าง AB = slope ของเส้นตรง ABหมายเหตุ เป็นกราฟเส้นตรง อัตราเร็วขณะใดขณะหนึ่งเท่ากับอัตราเร็วเฉลี่ย
ความเร็ว
ความเร็ว คือ การขจัดในหนึ่งหน่วยเวลา เป็นปริมาณเวคเตอร์ หน่วยเป็น เมตร/วินาที ( m/s )
ถ้ากำหนดข้อมูลเป็นกราฟ ระหว่าง การกระจัดกับเวลา ( s - t ) คำนวณหาความเร็วได้จากความชันของกราฟ ความเร็วคงที กราฟจะเป็นกราฟเส้นตรง
ความเร็ว = ความชัน
ความเร็วขณะหนึ่ง
คือความเร็วที่ปรากฏขณะนั้น หรือความเร็วในช่วงเวลาสั้น ๆ จากสูตร
.ถ้า t เข้าใกล้ศูนย์ ความเร็วขณะนั้นเราเรียกว่าความเร็วขณะใดขณะหนึ่ง

ตอบข้อ 4
ที่มา http://physicsacsp6217.blogspot.com/2010/04/blog-post_23.html


สืบค้นข้อมูล
ปริมาณที่เกี่ยวข้องกับการเคลื่อนที่
ปริมาณที่เกี่ยวข้องกับการเคลื่อนที่จะเป็นพื้นฐานในการศึกษาเรื่องของการเคลื่อนที่ ซึ่งในการเคลื่อนที่จะต้องประกอบไปด้วยองค์ประกอบ 3 ส่วน
Y วัตถุที่เคลื่อนที่ จะหมายจึงวัตถุที่มีลักษณะเป็นของแข็งที่คงรูปทรงอยู่ได้

Y ผู้สังเกต เป็นผู้ที่ศึกษาวัตถุที่เคลื่อนที่ โดยผู้สังเกตจะต้องอยู่นอกวัตถุที่เคลื่อนที่

Y จุดอ้างอิง การเคลื่อนที่ของวัตถุจะต้องมีการเปลี่ยนตำแหน่งของวัตถุดังนั้นเราจะต้องมีจุดอ้างอิง
เพื่อบอกตำแหน่งของวัตถุเมื่อเวลาผ่านไป

1. ระยะทาง (Distance) การเคลื่อนที่ของวัตถุจะเริ่มนับตั้งแต่จุดเริ่มต้นที่เราสังเกตเป็นจุดอ้างอิงแล้ววัดระยะทางตามแนวทางที่วัตถุเคลื่อนที่
ไปตามแนวทางการเคลื่อนที่ของวัตถุ


2. การกระจัด (Displacement) เป็นการบอกตำแหน่งของวัตถุหลังจากการที่เคลื่อนที่ไปแล้วในช่วงเวลาหนึ่งโดยจะบอกว่าห่างจากจุดเริ่มต้นเป็นระยะ
เท่าไร และอยู่ทางทิศไหนของจุดเริ่มต้น ดังนั้นการกระจัดเป็น ปริมาณเวกเตอร์ เพราะมีทั้งขนาดและทิศทาง
*********ถ้าวัตถุเคลื่อนที่กลับมาสู่จุดเริ่มต้น การกระจัดจะมีค่าเป็นศูนย์**********


3. เวลา (Time) การวัดเวลาเรานับ ณ จุดเริ่มสังเกต ซึ่งขณะนั้นวัตถุอาจจะหยุดนิ่ง หรือเคลื่อนที่อยู่ก็ตาม ค่าของเวลาจะมีความสัมพันธ์กับระยะทาง เมื่อเวลาผ่านไป ระยะทางที่วัตถุเคลื่อนที่ก็จะเพิ่มขึ้น ในบางครั้งอาจจะมีข้อมูลของระยะทางกับเวลาสัมพันธ์กัน


4. อัตราเร็ว (Speed) หมายถึง ระยะทางที่วัตถุเคลื่อนที่ได้ในหนึ่งหน่วยเวลา เป็นปริมาณสเกลาร์ มีหน่วยเป็น เมตร/วินาที



V แทน อัตราเร็ว มีหน่วยเป็น เมตร/วินาที (m/s)

S แทน ระยะทาง มีหน่วยเป็น เมตร (m)

t แทน เวลา มีหน่วยเป็น วินาที (s )


5. ความเร็ว (Velocity) หมายถึง การกระจัดของวัตถุที่เปลี่ยนไปในหน่วยเวลา



แทน ความเร็ว มีหน่วยเป็น เมตร/วินาที (m/s)

แทน การกระจัด มีหน่วยเป็น เมตร (m)

t แทน เวลา มีหน่วยเป็น วินาที (s )



6. ความเร่ง (Acceleration) ความเร็วที่เปลี่ยนไปในหนึ่งหน่วยเวลา


แทน ความเร่ง มีหน่วยเป็น เมตร/วินาที2 (m/s2 )

แทนความเร็วที่เปลี่ยนไป มีหน่วยเป็น เมตร/ วินาที(m/s)

แทน เวลา มีหน่วยเป็น วินาที (s )


ลักษณะของการเคลื่อนที่
ลักษณะของการเคลื่อนที่แบ่งได้ 4 ลักษณะ คือ

1. การเคลื่อนที่เป็นแนวเส้นตรง
ลักษณะของการเคลื่อนที่แบบนี้เป็นพื้นฐานของการเคลื่อนที่ เพราะทิศทางการเคลื่อนที่จะมีทิศทางเดียว
แต่อาจจะเคลื่อนที่ไป-กลับได้ รูปแบบการเคลื่อนที่อาจจะแตกต่างกันออกไป ตัวอย่างเช่น

- การเคลื่อนที่ของรถไฟบนราง

- การเคลื่อนที่ของรถบนถนนที่เป็นแนวเส้นตรง

- การเคลื่อนที่ภายใต้แรงโน้มถ่วงของโลก


2. การเคลื่อนที่แบบโพรเจกไทล์
เป็นการเคลื่อนที่ของวัตถุที่มีแนวเส้นทางการเคลื่อนที่เป็นรูปโค้งพาราโบลา และเป็นพาราโบลาทางแกน y
ที่มีลักษณะคว่ำการที่วัตถุเคลื่อนที่เป็นแนวเส้นโค้งเนื่องจากวัตถุเคลื่อนที่เข้าไปในบริเวณที่มีแรงกระทำต่อ
วัตถุไม่อยู่ในแนวเดียวกับทิศของการเคลื่อนที่


3. การเคลื่อนที่แบบวงกลม
เป็นการเคลื่อนที่ของวัตถุรอบจุดๆหนึ่ง โดยมีรัศมีคงที่ การเคลื่อนที่เป็นวงกลม
ทิศทางของการเคลื่อนที่จะเปลี่ยนแปลงตลอดเวลา ความเร็วของวัตถุจะเปลี่ยนไปตลอดเวลา ทิศของแรงที่กระทำจะตั้งฉากกับทิศของการเคลื่อนที่
แรงที่กระทำต่อวัตถุจะมีทิศทางเข้าสู่ศูนย์กลาง เราจึงเรียกว่า “แรงสู่ศูนย์กลาง”
ในขณะเดียวกัน จะมีแรงต้านที่ไม่ให้วัตถุเข้าสู่ศูนย์กลาง เราเรียกว่า “แรงหนีศูนย์กลาง” แรงหนีศูนย์กลางจะเท่ากับแรงสู่ศูนย์กลาง วัตถุจึงจะเคลื่อนที่เป็นวงกลมได้


4. การเคลื่อนที่แบบฮาร์มอนิกอย่างง่าย
ลักษณะของการเคลื่อนที่แบบฮาร์มอนิกอย่างง่าย จะเป็นการเคลื่อนที่ที่มีลักษณะ
พิเศษ คือ วัตถุจะเคลื่อนที่กลับไปกลับมาที่เราเรียกว่า แกว่ง หรือ สั่น การเคลื่อนที่แบบนี้จะเป็นการเคลื่อนที่อยู่ในช่วงสั้นๆ มีขอบเขตจำกัด เราเรียกว่า แอมพลิจูด (Amplitude) โดยนับจากตำแหน่งสมดุล ซึ่งอยู่ตรงจุดกลางวัดไปทางซ้ายหรือขวา เช่น การแกว่งของชิงช้า หรือยานไวกิงในสวนสนุก


รูป การสั่นและแกว่งของวัตถุ

ตอบข้อ 1
ที่มา http://www.thaigoodview.com/library/contest2551/science04/109/unt12/un12.html





สืบค้นข้อมูล
สนามไฟฟ้าและเส้นแรงไฟฟ้า

สนามไฟฟ้า ( Electric field ) หมายถึง " บริเวณโดยรอบประจุไฟฟ้า ซึ่งประจุไฟฟ้าสามารถส่งอำนาจไปถึง " หรือ"บริเวณที่เมื่อนำประจุไฟฟ้าเข้าไปวางแล้วจะเกิดแรงกระทำบนประจุไฟฟ้านั้น "จุดที่อยู่ใกล้ประจุไฟฟ้าจะมีความเข้มของสนามไฟฟ้าสูงกว่าจุดที่อยู่ไกลจากประจุ เนื่องจากสนามไฟฟ้าเป็นปริมาณเวกเตอร์ เวลามีสนามหลายสนามมากระทำร่วมกันเวลารวมกันจะต้องรวมแบบเวกเตอร์

สนามไฟฟ้า ( Electric field ) หมายถึง " บริเวณโดยรอบประจุไฟฟ้า ซึ่งประจุไฟฟ้าสามารถส่งอำนาจไปถึง " หรือ"บริเวณที่เมื่อนำประจุไฟฟ้าเข้าไปวางแล้วจะเกิดแรงกระทำบนประจุไฟฟ้านั้น "จุดที่อยู่ใกล้ประจุไฟฟ้าจะมีความเข้มของสนามไฟฟ้าสูงกว่าจุดที่อยู่ไกลจากประจุ เนื่องจากสนามไฟฟ้าเป็นปริมาณเวกเตอร์ เวลามีสนามหลายสนามมากระทำร่วมกันเวลารวมกันจะต้องรวมแบบเวกเตอร์




โดยคุณสมบัติของเส้นแรงไฟฟ้ามีดังนี้
-เส้นแรงไฟฟ้าแต่ละเส้นจะไม่ตัดกันเลย
- เส้นแรงไฟฟ้าจากประจุชนิดเดียวกัน จะไม่เสริมเป็นแนวเดียวกัน แต่จะเบนออกจากกัน แต่ถ้าเป็นเส้นแรงของประจุต่างชนิดกันจะเสริมเป็นแนวเดียวกัน
- เส้นแรงจะไม่พุ่งผ่านวัตถุตัวนำ แต่จะสิ้นสุดอยู่บริเวณที่ผิวของวัตถุตัวนำ
- สำหรับวัตถุตัวนำทรงกลมกลวงที่มีประจุไฟฟ้า และไม่มีวัตถุอื่นที่มีประจุไฟฟ้าอยู่ในทรงกลมกลวงนั้นเลย จะพบว่าไม่มีเส้นแรงไฟฟ้าอยู่ภายในทรงกลมนั้นเลย ไม่มีสนามไฟฟ้า ไม่มีแรงกระทำ เพราะฉะนั้น สนามไฟฟ้าจะเป็นศูนย์ ดังรูป





สนามไฟฟ้า หมายถึง " แรงที่เกิดขึ้นบนประจุ +1 คูลอมบ์ ที่เอาไปวางในสนามไฟฟ้านั้น " สนามไฟฟ้าจากประจุ Q ใด ๆ มีค่าดังนี้





E = สนามไฟฟ้าที่เกิดจากประจุ Q (N/C)
Q = ประจุแหล่งกำเนิดที่ทำให้เกิดสนามไฟฟ้า หน่วยคูลอมบ์ (C)
R = ระยะจากแหล่งกำเนิดถึงจุดที่ต้องการรู้ค่าสนามไฟฟ้า หน่วย เมตร (m)
ในการหาสนามไฟฟ้า ให้นำประจุ +1 C ไปวาง ณ จุดที่เราต้องการหาสนามไฟฟ้า แรงที่กระทำบนบนประจุ +1 C จะเป็น





เมื่อ
F = แรงที่กระทำบนประจุ +1 C(N)
E = สนามไฟฟ้าที่กระทำบนประจุ +1 C(N/C)
q = ประจุทดสอบ +1 C(C)
แรงที่เกิดขึ้นกับประจุในสนามไฟฟ้า ดังรูป



ข้อควรจำ
- ถ้านำประจุทดสอบบวกไปวางในสนามไฟฟ้าของประจุบวก สนามไฟฟ้ากับแรงบนประจุไฟฟ้าจะมีทิศเดียวกัน แต่ถ้านำประจุทดสอบลบไปวางในสนามไฟฟ้าของประจุบวก สนามไฟฟ้ากับแรงบนประจุไฟฟ้าจะมีทิศตรงข้ามกัน
- ถ้านำประจุทดสอบบวกไปวางในสนามไฟฟ้าของประจุลบ สนามไฟฟ้ากับแรงบนประจุไฟฟ้าจะมีทิศเดียวกัน แต่ถ้านำประจุทดสอบลบไปวางในสนามไฟฟ้าของประจุลบ สนามไฟฟ้ากับแรงบนประจุไฟฟ้าจะมีทิศตรงข้ามกัน

การเคลื่อนที่ของประจุไฟฟ้าในสนามไฟฟ้า แบ่งเป็น 2 แบบ คือ
- ถ้าประจุเคลื่อนที่ในแนวเดียวกับสนามไฟฟ้าจะได้การ

ตอบข้อ 4
ที่มา http://www.kmitl.ac.th/~ktbencha/project44/CAI/Electrostatics/Electric.html





สืบค้นข้อมุล
ความถี่ (อังกฤษ: frequency) คือปริมาณที่บ่งบอกจำนวนครั้งที่เหตุการณ์เกิดขึ้นในเวลาหนึ่ง การวัดความถี่สามารถทำได้โดยกำหนดช่วงเวลาคงที่ค่าหนึ่ง นับจำนวนครั้งที่เหตุการณ์เกิดขึ้น นำจำนวนครั้งหารด้วยระยะเวลา และ คาบ เป็นส่วนกลับของความถี่ หมายถึงเวลาที่ใช้ไปในการเคลื่อนที่ครบหนึ่งรอบ

ในระบบหน่วย SI หน่วยวัดความถี่คือเฮิรตซ์ (hertz) ซึ่งมาจากชื่อของนักฟิสิกส์ชาวเยอรมันชื่อ Heinrich Rudolf Hertz เหตุการณ์ที่มีความถี่หนึ่งเฮิรตซ์หมายถึงเหตุการณ์ที่เกิดขึ้นหนึ่งครั้งทุกหนึ่งวินาที หน่วยอื่นๆ ที่นิยมใช้กับความถี่ได้แก่: รอบต่อวินาที หรือ รอบต่อนาที (rpm) (revolutions per minute) อัตราการเต้นของหัวใจใช้หน่วยวัดเป็นจำนวนครั้งต่อนาที

อีกหนึ่งวิธีที่ใช้วัดความถี่ของเหตุการณ์คือ การวัดระยะเวลาระหว่างการเกิดขึ้นแต่ละครั้ง (คาบ) ของเหตุการณ์นั้นๆ และคำนวณความถี่จากส่วนกลับของคาบเวลา:


เมื่อ T คือคาบ

[แก้] ความถี่ของคลื่น
สำหรับคลื่นเสียง คลื่นแม่เหล็กไฟฟ้า (เช่นคลื่นวิทยุหรือแสง) สัญญาณไฟฟ้า หรือคลื่นอื่นๆ ความถี่ในหน่วยเฮิรตซ์ของคลื่นนั้นคือจำนวนรอบที่คลื่นนั้นซำรอยเดิมในหนึ่งวินาที สำหรับคลื่นเสียง ความถี่คือปริมาณที่บ่งบอกความทุ้มแหลม

ความถี่ของคลื่นมีความสัมพันธ์กับความยาวคลื่น กล่าวคือความถี่ f มีค่าเท่ากับความเร็ว v ของคลื่นหารด้วยความยาวคลื่น λ (lambda) :


ในกรณีของคลื่นแม่เหล็กไฟฟ้าที่เดินทางในสุญญากาศ ความเร็วด้านบนก็คือความเร็วแสง และสมการด้านบนก็เขียนใหม่ได้เป็น:


หมายเหตุ: เมื่อคลื่นเดินทางจากตัวกลางหนึ่งไปยังอีกตัวกลางหนึ่ง ความถี่ของคลื่นจะยังคงที่อยู่ ในขณะที่ความยาวคลื่นและความเร็วเปลี่ยนไปตามตัวกลาง

[แก้] ความถี่รอบตัวเรา
โดยทั่วไปเราสามารถแบ่งได้ดังนี้

3000-300 300-30 30-3 ความถี่
รังสีเอกซ์ รังสีเอกซ์ อุลตราไวโอเล็ต (UV) PHz
แสงที่มองเห็นได้ อินฟราเรด (IR) อินฟราเรด (IR) THz
คลื่น Sub millimeter EHF SHF GHz
UHF VHF HF MHz
MF LF VLF kHz
เสียง ไฟฟ้ากระแสสลับ - Hz

ความถี่มาตราฐานของโน้ตตัว C นั้นถูกกำหนดไว้ที่ 440 เฮิรตซ์ ซึ่งเท่ากับ 440 รอบต่อวินาที และเป็นความถี่ที่วงออเคสตราใช้เป็นหลักในการตั้งเสียง
เด็กทารกสามารถได้ยินเสียงที่มีความถี่สูงสุดประมาณ 20,000 เฮิรตซ์ แต่ผู้ใหญ่ไม่สามารถได้ยินเสียงที่ความถี่นี้ได้
ในทวีปยุโรป ความถี่ของไฟฟ้ากระแสสลับคือ 50 เฮิรตซ์ (ใกล้เคียงกับโน้ตตัว G) ที่ความต่างศักย์ 230 โวลต์
ในทวีปอเมริกาเหนือ ความถี่ของไฟฟ้ากระแสสลับคือ 60 เฮิรตซ์ (ใกล้เคียงกับโน้ตตัว B แฟลต) 117 โวลต์

ตอบข้อ 1
ที่มา http://th.wikipedia.org/wiki/%E0%B8%84%E0%B8%A7%E0%B8%B2%E0%B8%A1%E0%B8%96%E0%B8%B5%E0%B9%88

สืบค้นข้อมูล
ความยาวคลื่น คือระยะทางระหว่างส่วนที่ซ้ำกันของคลื่น สัญลักษณ์แทนความยาวคลื่นที่ใช้กันทั่วไปคือ อักษรกรีก แลมบ์ดา (λ).

สำหรับคลื่นรูปไซน์ ความยาวคลื่นมีค่าเท่ากับระยะห่างระหว่างยอดคลื่น:



แกนนอนในแผนภูมิแทนระยะทาง และแกนตั้งแทนค่า ณ เวลาหนึ่ง ของปริมาณหนึ่งซึ่งกำลังเปลี่ยนแปลง (ตัวอย่างเช่น สำหรับคลื่นเสียง ปริมาณที่กำลังเปลี่ยนแปลงก็คือแรงดันอากาศ หรือสำหรับคลื่นแม่เหล็กไฟฟ้า ปริมาณที่กำลังเปลี่ยนแปลงก็คือสนามไฟฟ้าและสนามแม่เหล็ก) ซึ่งเป็นฟังก์ชันของระยะทาง

ความยาวคลื่น λ สัมพันธ์แบบผกผันกับความถี่ของคลื่นนั้น โดยความยาวคลื่นมีค่าเท่ากับความเร็วของคลื่นนั้นๆ หารด้วยความถี่ ถ้าเราพิจารณาคลื่นแม่เหล็กไฟฟ้าในสุญญากาศ ความเร็วนั้นก็คือความเร็วแสงนั่นเอง ความสัมพันธ์นี้สามารถเขียนได้เป็น


เมื่อ:

λ = ความยาวคลื่น
c = ความเร็วแสงในสุญญากาศ ซึ่งมีค่าเท่ากับ 299,792.458 กิโลเมตรต่อวินาที
f = ความถี่ของคลื่น
สำหรับคลื่นวิทยุ ความสัมพันธ์นี้เขียนโดยประมาณได้เป็น: ความยาวคลื่น (ในหน่วยเมตร) = 300 / ความถี่ (ในหน่วย megahertz)

เมื่อคลื่นแสง (หรือคลื่นแม่เหล็กไฟฟ้าใดๆ) เดินทางในตัวกลางใดที่ไม่ใช่สุญญากาศ ความยาวคลื่นจะลดลงด้วยอัตราส่วนเท่ากับดรรชนีหักเห n ของตัวกลางนั้น แต่ความถี่จะยังคงเท่าเดิม ความยาวคลื่นแสงในตัวกลางใดๆ สามารถเขียนได้เป็น


เมื่อ:

λ0 คือความยาวคลื่นในสุญญากาศ
ไม่ว่าคลื่นแสงจะเดินทางอยู่ในตัวกลางใด เมื่อเราอ้างถึงความยาวคลื่น มักหมายถึงความยาวคลื่นในสุญญากาศเสมอ

หลุยส์-วิคทอร์ เดอบรอยล์ ค้นพบว่าอนุภาคที่มีโมเมนตัม มีความยาวคลื่นซึ่งสัมพันธ์กับฟังก์ชันคลื่นของอนุภาคนั้น เรียกว่า ความยาวคลื่นของเดอบรอยล์

ตอบข้อ 2
ที่มา http://th.wikipedia.org/wiki/%E0%B8%84%E0%B8%A7%E0%B8%B2%E0%B8%A1%E0%B8%A2%E0%B8%B2%E0%B8%A7%E0%B8%84%E0%B8%A5%E0%B8%B7%E0%B9%88%E0%B8%99




สืบค้นข้อมูล
ในขณะที่วัตถุมีการเคลื่อนที่ ได้ระยะทางและการกระจัดในเวลาเดียวกัน และต้องใช้เวลาในการเคลื่อนที่ จึงทำให้เกิดปริมาณสัมพันธ์ขึ้น ปริมาณดังกล่าวคือ

อัตราเร็ว คือ ระยะทางที่วัตถุเคลื่อนที่ได้ในหนึ่งหน่วยเวลา จัดเป็นเปริมาณสเกลลาร์ หน่วยในระบบเอสไอ มีหน่วยเป็น เมตร/วินาที
ความเร็ว คือ ขนาดของการกระจัดที่วัตถุเคลื่อนที่ได้ในหนึ่งหน่วยเวลา จัดเป็นปริมาณเวกเตอร์ ใช้หน่วยเดียวกับอัตราเร็ว
สมการแสดงความสัมพันธ์ของอัตราเร็ว ระยะทาง และเวลาเป็นดังนี้
ให้ เป็นค่าอัตราเร็วหรือความเร็ว
เป็นระยะทางหรือการกระจัด
เป็นเวลาที่ใช้ในการเคลื่อนที่
สมการคือ (สมการที่ 1)

อัตราเร็ว และความเร็ว เป็นปริมาณที่แสดงให้ทราบลักษณะการเคลื่อนที่ของวัตถุ ถ้าในทุก ๆ หน่วยเวลาของการเคลื่อนที่วัตถุเคลื่อนที่ด้วยขนาดของอัตราเร็ว หรือ ความเร็วเท่ากันตลอดการเคลื่อนที่ เรียกว่าวัตถุเคลื่อนที่ด้วยอัตราเร็วสม่ำเสมอหรืออัตราเร็วคงที่ ถ้าพิจราณาแล้วพบว่าในแต่ละหน่วยเวลาของการเคลื่อนที่วัตถุเคลื่อนที่ด้วยอัตราเร็วหรือความเร็วที่แตกต่างกัน กล่าวว่า วัตถุเคลื่อนที่ด้วยอัตราเร่ง หรือ ความเร่ง ในกรณีนี้การหาค่าอัตราเร็วหรือความเร็ว หาได้สองลักษณะคือ

อัตราเร็วขณะใดขณะหนึ่ง หรือความเร็วขณะใดขณะหนึ่ง เป็นการหาค่าอัตราเร็วหรือความเร็วในช่วงเวลาสั้น ๆ ช่วงใดช่วงหนึ่งของการเคลื่อนที่
อัตราเร็วเฉลี่ยหรือความเร็วเฉลี่ย เป็นการหาค่าอัตราเร็วหรือความเร็วหลังจากมีการเคลื่อนที่ โดยคำนวณหาจากการเฉลี่ยระยะทางทั้งหมดของการเคลื่อนที่ในหนึ่งหน่วยเวลาของการเคลื่อนที่ หรือการเฉลี่ยการกระจัดของการเคลื่อนที่ในหนึ่งหน่วยเวลา
ข้อสังเกต วัตถุที่เคลื่อนที่ด้วยอัตราเร็วสม่ำเสมอ ค่าอัตราเร็วขณะใดขณะหนึ่ง กับค่าอัตราเร็วเฉลี่ยมีค่าเท่ากัน


ลองคิดดู วัตถุที่เคลื่อนที่ด้วยความเร็วสม่ำเสมอ ค่าความเร็วขณะใดขณะหนึ่งกับค่าความเร็วเฉลี่ยมีค่าเท่ากันหรือไม่
วัตถุเปลี่ยนทิศทางการเคลื่อนที่ตลอดเวลาแต่ขนาดของความเร็วมีค่าสม่ำเสมอ วัตถุมีค่าความเร็วเฉลี่ยเท่ากับความเร็วขณะใดขณะหนึ่งหรือไม่

ตอบข้อ 3
ที่มา http://www.snr.ac.th/elearning/kosit/sec02p01.html




สืบค้นข้อมูล


ในขณะที่เราเคลื่อนที่ เราจะเปลี่ยนตำแหน่งที่อยู่ตลอดแนว เช่น ขณะเราขับรถยนต์ไปตามท้องถนน เราจะเคลื่อนที่ผ่านถนน ถนนอาจเป็นทางตรง ทางโค้ง หรือหักเป็นมุมฉาก ระยะทางที่รถเคลื่อนที่อาจเป็นระยะทางตามตัวเลขที่ราบของการเคลื่อนที่ แต่หากบางครั้งเราจะพบว่า จุดปลายทางที่เราเดินทางห่างจากจุดต้นทางในแนวเส้นตรง หรือในแนวสายตาไม่มากนัก



ระยะทาง (distance) คือ ความยาวตามเส้นทางที่วัตถุเคลื่อนที่ไปได้ทั้งหมด เป็นปริมาณสเกลาร์ คือ มีแต่ขนาดอย่างเดียว มีหน่วยเป็นเมตร โดยทั่วไปเราใช้สัญลักษณ์ S

การกระจัด (displacement) คือ เส้นตรงที่เชื่อมโยงระหว่างจุดเริ่มต้น และจุดสุดท้ายของการเคลื่อนที่เป็นปริมาณเวกเตอร์ คือ ต้องคำนึงถึงทิศทางด้วย มีหน่วยเป็นเมตร โดยทั่วไปเขียนแบบเว็กเตอร์เป็น S

ตัวอย่างที่ 1


ชายคนหนึ่งเดินจาก ก ไป ข แล้วจาก ข ไป ค และไป ง

ชายคนนี้จะได้ระยะทาง = 6 + 3 + 2 เมตร = 11 เมตร

ชายคนนี้จะได้การกระจัด = 5 เมตร

ตัวอย่างที่ 2


ถ้าวัตถุเคลื่อนที่ จาก A ไป B ตามเส้นทาง S1 จะได้ระยะทาง = S1, ระยะกระจัด = S3

ถ้าวัตถุเคลื่อนที่ จาก A ไป B ตามเส้นทาง S2 จะได้ระยะทาง = S2, ระยะกระจัด = S3

ถ้าวัตถุเคลื่อนที่ จาก A ไป B ตามเส้นทาง S3 จะได้ระยะทาง = S3, ระยะกระจัด = S3

ถ้าวัตถุเคลื่อนที่ จาก A ไป B ตามเส้นทาง S4 จะได้ระยะทาง = S4, ระยะกระจัด = S3

การกระจัดจึงมีค่าเท่ากับระยะทาง เมื่อวัตถุเคลื่อนที่เป็นเส้นตรง

ตอบข้อ 2
ที่มา http://www.school.net.th/library/snet3/jee/distance/DISTANCE.HTM





สืบค้นข้อมูล

อัตราเร็ว (สัญลักษณ์: v) คืออัตราของ การเคลื่อนที่ หรือ อัตราการเปลี่ยนแปลงของตำแหน่งก็ได้ หลายครั้งมักเขียนในรูป ระยะทาง d ที่เคลื่อนที่ไปต่อ หน่วย ของ เวลา t

อัตราเร็ว เป็นปริมาณสเกลาร์ที่มีมิติเป็นระยะทาง/เวลา ปริมาณเวกเตอร์ที่เทียบเท่ากับอัตราเร็วคือความเร็ว อัตราเร็ววัดในหน่วยเชิงกายภาพเดียวกับความเร็ว แต่อัตราเร็วไม่มีองค์ประกอบของทิศทางแบบที่ความเร็วมี อัตราเร็วจึงเป็นองค์ประกอบส่วนที่เป็นขนาดของความเร็ว

ในรูปสัญลักษณ์ทางคณิตศาสตร์ อัตราเร็วคือ


หน่วยของอัตราเร็ว ได้แก่

เมตรต่อวินาที, (สัญลักษณ์ m/s) , ระบบหน่วย SI
กิโลเมตรต่อชั่วโมง, (สัญลักษณ์ km/h)
ไมล์ต่อชั่วโมง, (สัญลักษณ์ mph)
นอต (ไมล์ทะเลต่อชั่วโมง, สัญลักษณ์ kt)
มัค เมื่อมัค 1 เท่ากับ อัตราเร็วเสียง มัค n เท่ากับ n เท่าของอัตราเร็วเสียง
มัค 1 ≈ 343 m/s ≈ 1235 km/h ≈ 768 mi/h (ดู อัตราเร็วเสียง สำหรับข้อมูลเพิ่มเติม)
อัตราเร็วแสง ใน สุญญากาศ (สัญลักษณ์ c) เป็นหนึ่งใน หน่วยธรรมชาติ
c = 299,792,458 m/s
การเปลี่ยนหน่วยที่สำคัญ
1 m/s = 3.6 km/h
1 mph = 1.609 km/h
1 knot = 1.852 km/h = 0.514 m/s
ยานพาหนะต่าง ๆ มักมี speedometer สำหรับวัดอัตราเร็ว

วัตถุที่เคลื่อนที่ไปตามแนวราบ พร้อม ๆ กับแนวดิ่ง (เช่น อากาศยาน) จะแยกประเภทเป็น forward speed กับ climbing speed

ตอบข้อ 3
ที่มา http://th.wikipedia.org/wiki/%E0%B8%AD%E0%B8%B1%E0%B8%95%E0%B8%A3%E0%B8%B2%E0%B9%80%E0%B8%A3%E0%B9%87%E0%B8%A7

สืบค้นข้อมูล
เนื้อหาโดยย่อ
ประจุไฟฟ้า เป็นคุณสมบัติพื้นฐานของอนุภาคซึ่งเล็กกว่าอะตอม และมีค่าเป็นขั้นๆ ไม่ต่อเนื่อง สามารถระบุค่าในรูปของ ค่าประจุพื้นฐาน (elementary particle) e โดย อิเล็กตรอนมีค่าประจุ -1 โปรตอนมีค่าประจุ +1 ควาร์กมีค่าประจุเป็นเศษส่วน -1/3 หรือ 2/3 และอนุภาคต่อต้าน (antiparticle) ของอนุภาคดังกล่าวมีค่าประจุตรงกันข้าม นอกจากนั้นแล้วยังมีอนุภาคที่ประจุอื่นๆ อีก

ค่าประจุไฟฟ้าของวัตถุขนาดใหญ่ มีค่าเท่ากับผลรวมของประจุไฟฟ้าของอนุภาคที่เป็นองค์ประกอบ โดยปกติแล้วค่าประจุของวัตถุมีค่ารวมเท่ากับศูนย์ เนื่องจากตามธรรมชาติแล้วอะตอมหนึ่งๆ มีจำนวนอิเล็กตรอน เท่ากับโปรตอน ค่าประจุจึงหักล้างกันไป ส่วนกรณีที่ค่าประจุรวมไม่เท่ากับศูนย์นั้นมักจะเรียกว่า ไฟฟ้าสถิตย์ แต่ในกรณีที่ผลรวมของค่าประจุเท่ากับศูนย์ แต่การกระจายตัวของประจุนั้นไม่สม่ำเสมอ จะเรียกวัตถุนั้นว่ามีขั้ว (polarized) หากประจุไฟฟ้าเคลื่อนที่ไปในทิศทางใดทิศทางหนึ่ง นั้นจะทำให้เกิดกระแสไฟฟ้า

หน่วย SI ของประจุไฟฟ้ามีค่าเป็น คูลอมบ์ มีค่าประมาณ 6.24 x 1018 เท่าของค่าประจุพื้นฐาน ค่าคูลอมบ์นั้นกำหนดขึ้นโดยเท่ากับ ปริมาณของประจุทั้งหมดที่วิ่งผ่าน พื้นที่ตัดขวางของตัวนำ ที่มีกระแสไหลผ่าน 1 แอมแปร์ ในช่วงเวลา 1 วินาที นิยมใช้สัญญลักษณ์ Q ในการแทนประจุ

ค่าประจุไฟฟ้าสามารถวัดได้โดยใช้อุปกรณ์ที่เรียกว่า อิเล็กโตรมิเตอร์ (electrometer) โรเบิร์ต มิลลิแคน (Robert Millikan) เป็นบุคคลแรกที่แสดงให้เห็นว่าค่าของประจุไฟฟ้านี้ มีค่าไม่ต่อเนื่องเป็นขั้นๆ โดยการทดลองด้วยหยดน้ำมัน

ค่าของประจุนั้นมีค่าเป็นขั้น โดยเป็นจำนวนเท่า หรือ ทวีคูณ ของค่าประจุพื้นฐาน e แต่เนื่องจากค่าประจุของวัตถุขนาดใหญ่นั้นคือค่าเฉลี่ยของประจุพื้นฐานจำนวนมหาศาล ดังนั้นจึงเสมือนเป็นค่าที่ต่อเนื่อง

[แก้] ประวัติ
การค้นพบประจุไฟฟ้านั้นสามารถสืบย้อนกลับไปได้ถึงยุคกรีกโบราณ โดยในช่วง 600 ปีก่อนคริสต์ศักราช เทลีส แห่งไมเลตัส นักปราชญ์ชาวกรีก ได้กล่าวถึงการสะสมของประจุไฟฟ้าจากการขัดถูวัสดุหลายชนิด เช่น อำพัน กับ ผ้าขนสัตว์ วัสดุที่สะสมประจุเหล่านี้สามารถดึงดูดวัตถุที่มีน้ำหนักเบา เช่น เส้นผม ได้ ยิ่งไปกว่านั้น หากวัสดุเหล่านี้ถูกขัดถูเป็นเวลานานพอ จะทำให้เกิดประกายไฟ ซึ่งเป็นปรากฏการณ์ที่เกิดจาก ไฟฟ้าจากการขัดถู (triboelectric effect) คำภาษาอังกฤษ electricity มาจากคำในภาษากรีก ηλεκτρον (electron) ซึ่งหมายถึง อำพัน

ในปี ค.ศ. 1733 ดูเฟย์ (C. F. Du Fay) ได้เสนอ [1] ว่าไฟฟ้านั้นมีอยู่ 2 ชนิดซึ่งหักล้างกัน โดยนำเสนอในรูปทฤษฎีของของไหลสองชนิด เขาได้เสนอว่าเมื่อถูแก้วกับผ้าไหม แก้วจะมีประจุที่เรียกว่า ไฟฟ้าวิเทรียส (vitreous electricity) ส่วนเมื่อถูอำพันกับผ้าขนสัตว์ อำพันจะมีประจุที่เรียกว่า ไฟฟ้าเรซินัส (resinous electricity)

ต่อมาในช่วงคริสต์ศตวรรษที่ 18 การศึกษาเกี่ยวกับไฟฟ้านั้นเริ่มแพร่หลายมากขึ้น โดยที่เบนจามิน แฟรงกลิน ซึ่งเป็นหนึ่งในผู้เชี่ยวชาญในยุคนั้นไม่เห็นด้วยกับทฤษฎีของไหลสองชนิด เขาได้ตั้งข้อโต้แย้งให้การสนับสนุน ทฤษฎีของไหลชนิดเดียว โดยจินตนาการไฟฟ้าเป็นเสมือนของไหลที่ไม่สามารถมองเห็นได้ และมีอยู่ในสสารทุกชนิด เช่น ในกรณีของ ไหไลเดน (Leyden jar) นั้น เนื้อแก้วเป็นส่วนที่เก็บสะสมประจุ เขาได้ตั้งสมมุติฐานว่า การขัดถูผิวของวัตถุฉนวนต่างชนิด ทำให้ของไหลที่ว่านี้เกิดการไหลเปลี่ยนตำแหน่งเกิดเป็นกระแสไฟฟ้า นอกจากนั้นแล้วเขายังได้ตั้งสมมุติฐานว่า หากวัตถุมีของเหลวนี้น้อยเกินไปจะทำให้มีค่าประจุเป็นลบ ถ้าหากมีมากเกินไปจะมีค่าประจุเป็นบวก ด้วยเหตุผลที่ไม่เป็นที่แน่ชัด แฟรงกลินได้ ระบุว่า ค่าประจุบวก คือ ไฟฟ้าวิเทรียส และ ค่าประจุลบ คือ ไฟฟ้าเรซินัส ซึ่ง วิลเลียม วัตสันก็ได้ค้นพบข้อสรุปเดียวกันนี้ในช่วงเวลาที่ใกล้เคียงกัน

แบบจำลองของ แฟรงกลินและวัตสัน นั้นใกล้เคียงกับแบบจำลองในปัจจุบันซึ่งมีความซับซ้อนมากกว่า ในปัจจุบันเราทราบว่าสสารนั้นจริงๆ แล้วประกอบด้วยอนุภาคที่มีประจุอยู่หลายชนิด เช่น โปรตอน และ อิเล็กตรอน และกระแสไฟฟ้านั้นก็เกิดได้หลายแบบ เช่น เกิดจากการไหลของอิเล็กตรอน เกิดจากการไหลของสิ่งที่เรียกว่า "โฮล" (ของอิเล็กตรอน) ซึ่งทำตัวเสมือนประจุบวก และในสารละลายอิเล็กโตรไลท์นั้น เกิดจากการไหลของอนุภาคที่เรียกว่า อิออน สองชนิดคือ อิออนบวก และ อิออนลบ เพื่อความสะดวกในการทำงาน ผู้ที่ทำงานเกี่ยวกับไฟฟ้าในปัจจุบันนั้นก็ยังใช้แบบจำลองกระแสไฟฟ้าของแฟรงกลิน โดยจำลองกระแสไฟฟ้าเป็นการไหลของประจุบวกเท่านั้น (เรียกว่า กระแสแบบดั้งเดิม) ถึงแม้แบบจำลองอย่างง่ายนี้ช่วยลดความซับซ้อนในการทำความเข้าใจหลักการทางไฟฟ้า และ การคำนวณ ต่างๆ แต่ก็ทำให้มองข้ามข้อเท็จจริงที่ในสารตัวนำบางชนิด (เช่น อิเล็กโตรไลท์ สารกึ่งตัวนำ และ พลาสมา) นั้นมีการไหลของอนุภาคที่มีประจุอยู่หลายประเภท และนอกจากนั้นแล้ว ทิศทางการไหลของกระแสแบบดั้งเดิมนี้ ก็สวนทางกับทิศทางการไหลของอิเล็กตรอนในโลหะซึ่งใช้เป็นตัวนำ ซึ่งทำให้เกิดความสับสนสำหรับผู้เริ่มศึกษาอิเล็กทรอนิกส์

[แก้] คุณสมบัติ
นอกจากคุณสมบัติทางแม่เหล็กไฟฟ้าที่กล่าวข้างต้นแล้ว ประจุยังเป็นคุณสมบัติที่ไม่เปลี่ยนแปลงสัมพัทธ์ (ตามทฤษฎีสัมพัทธภาพ) คือ หากอนุภาคมีประจุ q ไม่ว่าประจุนั้นจะเคลื่อนที่ด้วยความเร็วเท่าไร ก็จะยังมีประจุ q คุณสมบัตินี้ได้รับการยืนยันโดยการแสดงให้เห็ว่า ค่าประจุในหนึ่งนิวเคลียสของฮีเลียม (มี 2 โปรตอน และ 2 นิวตรอนในนิวเคลียสของฮีเลียม และเคลื่อนที่ไปมาด้วยความเร็วสูง) มีค่าเท่ากับประจุของนิวเคลียส 2 นิวเคลียสของดิวเทอเรียม (ซึ่งมี โปรตอน และ นิวตรอน อย่างละหนึ่งตัวในนิวเคลียส และ เคลื่อนที่ด้วยความเร็วที่ต่ำกว่าที่อยู่ในนิวเคลียสของฮีเลียมมาก)

[แก้] กฎการอนุรักษ์ของประจุ
ประจุทั้งหมดของระบบโดดเดี่ยว (isolated system) มีค่าคงที่เสมอ โดยไม่ขึ้นกับการเปลี่ยนแปลงของประจุภายในระบบ กฎดังกล่าวเป็นจริงในทุกกระบวนการทางฟิสิกส์ และสามารถเขียนในรูปสมการทางคณิตศาสตร์ได้จากสมการของแมกซ์เวลล์ เรียก สมการของความต่อเนื่อง (continuity equation) ซึ่งระบุว่า การเปลี่ยนแปลงรวมของ ความหนาแน่นประจุ (charge density) ρ ในปริมาตรV มีค่าเท่ากับความหนาแน่นกระแส(current density) J รวม ที่ผ่านพื้นผิว S ของปริมาตรนั้น ซึ่งก็คือกระแส I:
ตอบข้อ 3
ที่มา http://th.wikipedia.org/wiki/%E0%B8%9B%E0%B8%A3%E0%B8%B0%E0%B8%88%E0%B8%B8%E0%B9%84%E0%B8%9F%E0%B8%9F%E0%B9%89%E0%B8%B2





สืบค้นข้อมูล
การเคลื่อนที่ ด้วย ความเร็ว ความเร่ง และ การเคลื่อนที่ในแนวตรง



การเคลื่อนที่ ในแนวตรง
อัตราเร็ว คือการเปลี่ยนแปลง ระยะทาง ต่อเวลา
อัตราเร็วเฉลี่ย หน่วย เมตร/วินาที(m/s)
s = ระยะทางที่เคลื่อนที่ได้ (m) ตามแนวเคลื่อนที่จริง
t = เวลาในการเคลื่อนที่ (s)

ความเร็ว คือ การเปลี่ยน แปลงการกระจัด
ความเร็วเฉลี่ย หน่วย เมตร/วินาที (m/s)
s = การกระจัด (m) คือ ระยะทางที่สั้นที่สุดในการย้ายตำแหน่ง หนึ่งไป อีกตำแหน่งหนึ่ง

ความเร่ง คือ อัตราการเปลี่ยน ความเร็ว
ความเร่ง หน่วย เมตรต่อ วินาที2( m/s2)
a = ความเร่ง
แสดง เป็นกราฟ การกระจัดกับเวลา ความเร็วกับเวลา ความเร่งกับเวลา



การเคลื่อนที่ในแนวเส้นตรง
การเคลื่อนที่ในแนวตรงด้วยความเร่งคงที่ มีสูตรดังนี้
s = vt u = ความเร็วเริ่มต้น (m/s)
v = ความเร็วตอนปลาย (m/s )
s = ระยะทาง(m)
a = ความเร่ง ( m/s2)


การเคลื่อนที่ในแนวดิ่งภายใต้แรงดึงดูดของโลก
1.v = u - gt u = ความเร็วต้น เป็น + เสมอ
v = ความเร็วปลาย + ถ้าทิศเดียวกับ u และเป็น - ถ้าทิศตรงขามกับ u
s หรือ h = ระยะทางเป็น + ตอนวิ่งขึ้น และเป็น - ตอนวิ่งลง

3.v2 = u 2+2gh g = ความเร่งจากแรงโน้มถ่วง

ตอบข้อ 2
ที่มา http://www.icphysics.com/modules.php?name=Content&pa=showpage&pid=43




สืบค้นข้อมูล
ในทางฟิสิกส์ ความเร็ว คืออัตราการเปลี่ยนแปลงของตำแหน่งต่อหน่วยเวลา มีหน่วยเป็นเมตรต่อวินาที (m/s) ในหน่วยเอสไอ ความเร็วเป็นปริมาณเวกเตอร์ซึ่งประกอบด้วยอัตราเร็วและทิศทาง ขนาดของความเร็วคืออัตราเร็วซึ่งเป็นปริมาณสเกลาร์ ตัวอย่างเช่น "5 เมตรต่อวินาที" เป็นอัตราเร็ว ในขณะที่ "5 เมตรต่อวินาทีไปทางทิศตะวันออก" เป็นความเร็ว ความเร็วเฉลี่ย v ของวัตถุที่เคลื่อนที่ไปด้วยการกระจัดขนาดหนึ่ง ∆x ในช่วงเวลาหนึ่ง ∆t สามารถอธิบายได้ด้วยสูตรนี้
อัตราการเปลี่ยนแปลงของความเร็วคือความเร่ง คือการอธิบายว่าอัตราเร็วและทิศทางของวัตถุเปลี่ยนไปอย่างไรในช่วงเวลาหนึ่ง และเปลี่ยนไปอย่างไร ณ เวลาหนึ่ง
สมการการเคลื่อนที่
ดูบทความหลักที่ สมการการเคลื่อนที่
เวกเตอร์ความเร็วขณะหนึ่ง v ของวัตถุที่มีตำแหน่ง x (t) ณ เวลา t และตำแหน่ง x (t + ∆t) ณ เวลา t + ∆t สามารถคำนวณได้จากอนุพันธ์ของตำแหน่ง
สมการของความเร็วของวัตถุยังสามารถหาได้จากปริพันธ์ของสมการของความเร่ง ที่วัตถุเคลื่อนที่ตั้งแต่เวลา t0 ไปยังเวลา tn
วัตถุที่มีความเร็วเริ่มต้นเป็น u มีความเร็วสุดท้ายเป็น v และมีความเร่งคงตัว a ในช่วงเวลาหนึ่ง ∆t ความเร็วสุดท้ายหาได้จาก
ความเร็วเฉลี่ยอันเกิดจากความความเร่งคงตัวจึงเป็น ตำแหน่ง x ที่เปลี่ยนไปของวัตถุดังกล่าวในช่วงเวลานั้นหาได้จาก
กรณีที่ทราบเพียงความเร็วเริ่มต้นของวัตถุเพียงอย่างเดียว คำนวณได้ดังนี้
และเมื่อต้องการหาตำแหน่ง ณ เวลา t ใด ๆ ก็สามารถขยายนิพจน์ได้ดังนี้

ตอบข้อ1
ที่มา http://th.wikipedia.org/wiki/%E0%B8%84%E0%B8%A7%E0%B8%B2%E0%B8%A1%E0%B9%80%E0%B8%A3%E0%B9%87%E0%B8%A7


สืบค้นข้อมูล
การเคลื่อนที่แบบโพรเจกไทล์ คือการเคลื่อนที่ในแนวโค้งพาราโบลา ซึ่งเกิดจากวัตถุได้รับความเร็วใน 2 แนวพร้อมกัน คือ ความเร็วในแนวราบและความเร็วในแนวดิ่ง ตัวอย่างของการเคลื่อนที่แบบโพรเจกไทล์ ได้แก่ ดอกไม้ไฟ น้ำพุ การเคลื่อนที่ของลูกบอลที่ถูกเตะขึ้นจากพื้น การเคลื่อนที่ของนักกระโดดไกล สำหรับในบทเรียนนี้เราจะศึกษาในเรื่องลักษณะของการเคลื่อนที่แบบโพรเจกไทล์ การคำนวณหาปริมาณที่เกี่ยวข้องกับการเคลื่อนที่แบบโพรเจคไทด์ , โพรเจคไทด์ในแนวราบ , โพรเจกไทล์ในแนวดิ่ง หลังจากนั้นนักเรียนจะได้ทดสอบความเข้าใจกับแบบฝีกหัด และแบบทดสอบ

ตอบข้อ 3
ที่มา http://www.rmutphysics.com/physics/oldfront/circular-motion/projectile/pro1.htm


1 ความคิดเห็น: